# BRAIN PERFUSION STUDY (Tc-99m-ECD, Tc-99m-HMPAO)

# Overview

• The Brain Perfusion Study produces SPECT tomograms depicting the distribution of blood flow and perfusion to the various structures of the brain (1).

# Indications

- Diagnosis of Alzheimer's disease (2,3).
- Localization of seizure foci (4-6).
- Evaluation of carotid blood flow prior to surgical occlusion (7).
- Diagnosis of brain death (8,9).
- Evaluation of brain injury (10).

## **Examination Time**

• 1 hour.

## **Patient Preparation**

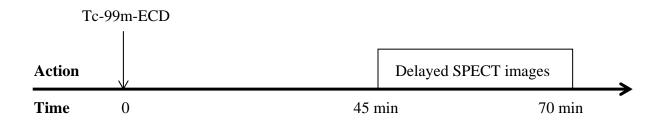
- The imaging room should be quiet and dimly lit (11,12).
- Instruct the patient not to read or speak.
- Place an intravenous line in advance so the patient does not experience pain from the needle puncture at the time of radiopharmaceutical injection.

## **Equipment & Energy Windows**

- Camera: Rotating gamma camera. Two or three-headed gamma camera imaging system is preferred (13).
- Collimator (14): Low energy, high resolution, parallel hole collimator.
- Energy window: 20% window centered at 140 keV.
- Computer with SPECT software.

# Radiopharmaceutical, Dose, & Technique of Administration

- Radiopharmaceutical (15,16): Tc-99m-ethyl cysteinate dimer (Tc-99m-ECD).  $\theta$  Tc-99m-hexamethylpropyleneamineoxime (Tc-99m-HMPAO).
- Dose: 20 mCi (740 MBq).
- Technique of administration: Through an existing intravenous line.


## **Patient Position & Imaging Field**

- Patient position:
  - 1. Supine with the head in a head holder secured with a velcro strap.
  - 2. Flex the head so that the cerebellum is included in the field of view.
- Imaging field: Entire brain including the cerebellum.

#### Acquisition Protocol

- Time from injection to beginning image acquisition (13):
  - > Tc-99m-ECD : 45 minutes.
  - > Tc-99m-HMPAO: 90 minutes.
- Have the patient void prior to image acquisition to maximize patient comfort (13).
- Image acquisition parameters:
  - 1. Degrees of rotation:  $360^{\circ}$ .
  - 2. Number of images: 64.
  - 3. Time per image: Approximately 20 seconds.
  - 4. Matrix: 128 x 128 pixels.

#### **Protocol Summary Diagram**



#### **Data Processing**

- Correct the planar images for camera non-uniformity with a high count, e.g. 30 million count, Co-57 flood field image.
- Reconstruct transverse, sagittal, and coronal images (17).
- Correct for attenuation using transmission maps if available (18).
- Construct a 3 dimensional surface display of the brain for dynamic viewing (19).

# **Optional Maneuvers**

- Fast acquisition: Fast acquisition methods may be used in patients who are unable to hold still for prolonged periods of time (20).
- Seizures may be produced pharmacologically with pentylenetetrazol for ictal imaging (21).
- Acetazolamide may be used to increase the sensitivity of brain perfusion imaging for cerebrovascular ischemia (22,23):
  - 1. Contraindications (23):
    - a) allergy to sulfonamides (Acetazolamide is a non-bacteriostatic sulfonamide.).
    - b) active transient ischemic attacks (This is not an absolute contraindication.).
  - 2. Side effects occur in about 50% of patients & last for about 15 minutes (23):
    - a) numbness around mouth or fingers.
    - b) lightheadedness or blurred vision.
    - c) flushed feeling around face and neck.
  - 3. Inject 1 gm of acetazolamide intravenously over 1-2 minutes.
  - 4. Wait 25 minutes and then inject the radiopharmaceutical.
  - 5. Wait 20 minutes and acquire images in the usual manner.
  - 6. A baseline brain perfusion study without acetazolamide is performed one or more days later.
  - 7. Adenosine or dipyridamole may be used instead of acetazolamide (24,25).
- Diagnosis of brain death (8,9):
  - 1. Position the gamma camera for an ANT dynamic study of the head.
  - 2. Inject radiopharmaceutical in a bolus fashion and acquire 2 second serial analog and/or digital images for at least 30 seconds.
  - 3. Approximately 15 minutes after injection, acquire planar images in the ANT and right or left LAT projections.
  - 4. SPECT imaging may be performed if necessary and feasible.

- Quantification: Activity in the tomograms may be quantitated on a regional basis (26,27).
- Interictal images may be subtracted from ictal images in the same patient (28).
- Superimposition of perfusion and anatomic images: Images may be superimposed on corresponding magnetic resonance images with computer assistance (29,30).

#### Principle Radiation Emission Data - Tc-99m (31)

• Physical half-life = 6.01 hours.

| Radiation | Mean % per disintegration | Mean energy (keV) |
|-----------|---------------------------|-------------------|
| Gamma-2   | 89.07                     | 140.5             |

#### **Dosimetry - Tc-99m-ECD** (32)

| Organ            | rads/20 mCi | mGy/740 MBq |
|------------------|-------------|-------------|
| Bladder wall     |             |             |
| 2 hour void      | 2.2         | 22.0        |
| 4.8 hour void    | 5.4         | 54.0        |
| Gallbladder wall | 1.8         | 18.0        |
| Large intestine  | 1.2         | 12.0        |
| Small intestine  | 0.7         | 7.0         |
| Kidneys          | 0.5         | 5.4         |
| Brain            | 0.4         | 4.0         |

#### Dosimetry - Tc-99m-HM-PAO (33)

| Organ            | rads/20 mCi | mGy/740 MBq |
|------------------|-------------|-------------|
| Lachrymal glands | 5.2         | 52.0        |
| Gallbladder wall | 3.8         | 38.0        |
| Kidneys          | 2.6         | 26.0        |
| Thyroid          | 2.0         | 20.0        |
| Large intestine  | 1.6         | 16.0        |
| Liver            | 1.1         | 11.0        |
| Small Intestine  | 0.9         | 9.0         |
| Bladder wall     | 0.9         | 9.0         |
| Brain            | 0.5         | 5.0         |
| Ovaries          | 0.5         | 5.0         |
| Total body       | 0.3         | 3.0         |
| Testes           | 0.1         | 1.0         |
| References       |             |             |

- 1. Payne JK, Trivedi MH, Devous MD: Comparison of technetium-99m-HMPAO and xenon-133 measurements of regional cerebral blood flow by SPECT. J Nucl Med 37:1735-1740, 1996.
- 2. Herholz K, Schopphoff H, Schmidt M, et al: Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med 43:21-26, 2002.
- 3. Bonte FJ, Weiner MF, Bigio EH, et al: Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. <u>Radiology</u> 202:793-797, 1997.
- 4. Devous MD, Thisted RA, Morgan GF, et al: SPECT brain imaging in epilepsy: A meta-analysis. J Nucl Med 39:285-293, 1998.
- 5. Spanake MV, Spencer SS, Corsi M, et al: Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 40:730-736, 1999.
- 6. Kaiboriboon K, Bertrand ME, Osman MM, er al: Quantitiative analysis of cerebral blood flow patterns in mesial temporal lobe epilepsy using composite SISCOM. J Nucl Med 46:38-43, 2005.
- 7. Sugawara Y, Kikuchi T, Ueda T, et al: Usefulness of brain SPECT to evaluate brain tolerance and hemodynamic changes during temporary balloon occlusion test and after permanent carotid occlusion. J Nucl Med 43:1616-1623, 2002.
- 8. Spieth ME, Ansari AN, Kawada TK, et al: Direct comparison of Tc-99m DTPA and Tc-99m HMPAO for evaluating brain death. <u>Clin Nucl Med</u> 19:867-872, 1994.
- 9. Kurtek RW, Lai KK Tauxe WN, et al: Tc-99m hexamethylpropylene amine oxime scintigraphy in the diagnosis of brain death and its implications for the harvesting of organs used for transplantation. <u>Clin Nucl Med</u> 25:7-10, 2000.
- 10. Jacobs A, Put E, Ingels M, et al: One-year follow-up of technetium-99m-HMPAO SPECT in mild head injury. J Nucl Med 37:1605-1609, 1996.
- 11. Woods SW, Hegeman IM, Zubal G, et al: Visual stimulation increases technetium-99m-HMPAO distribution in human visual cortex. J Nucl Med 32:210-215, 1991.
- 12. Scao YL, Jezequel J, Robier A, et al: Reliability of low-frequency auditory stimulation studies associated with technetium-99m hexamethylpropylene amine oxime single-photon emission tomography. <u>Eur J Nucl Med</u> 20:387-390, 1993.
- 13. Juni JE, Waxman AD, Devous MD, et al: Procedure guideline for brain perfusion SPECT using technetium-99m radiopharmaceuticals. J Nucl Med 39:923-926, 1998.
- 14. Li J, Jaszczak RJ, Turkington TG, et al: An evaluation of lesion detectability with cone-beam, fanbeam and parallel-beam collimation in SPECT by continuous ROC study. J Nucl Med 35:135-140, 1994.
- 15. Asenbaum S, Brucke T, Pirker W, et al: Imaging of cerebral blood flow with technetium-99m-HMPAO and technetium-99m-ECD: A comparison. J Nucl Med 39:613-618, 1998.
- 16. van Dyck CH, Lin CH, Smith EO, et al: Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer's disease. J Nucl Med 37:1749-1755, 1996.

- 17. Kauppinen T, Koskinen MO, Alenius S, et al: Improvement of brain perfusion SPET using iterative reconstruction with scatter and nonuniform attenuation correction. <u>Eur J Nucl Med</u> 27:1380-1386, 2000.
- 18. Licho R, Glick SJ, Xia W, et al: Attenuation compensation in Tc-99m-SPECT brain imaging: A comparison of the use of attenuation maps derived from transmission versus emission data in normal scans. J Nucl Med 40:456-463, 1999.
- 19. Hashikawa K, Matsumoto M, Moriwake H, et al: Three-dimensional display of surface cortical perfusion by SPECT: Application in assessing Alzheimer's disease. J Nucl Med 36:690-696, 1995.
- 20. Oshima M, Tadokoro M, Sakuma S: Comparison of Tc-99m HMPAO fast SPECT with Tc-99m HMPAO conventional SPECT in patients with acute stroke. <u>Clin Nucl Med</u> 17:18-22, 1992.
- 21. Calcagni ML, Giordano A, Bruno I, et al: Ictal brain SPET during seizures pharmacologically provoked with pentylenetetrazol: A new diagnostic procedure in drug-resistant epileptic patients. <u>Eur J Nucl Med</u> 29:1298-1306, 2002.
- 22. Okazawa H, Yamauchi H, Sugimoto K, et al: Differences in vaso dilatory capacity and changes in cerebral blood flow induced by acetazolamide in patients with cerebrovascular disease. J Nucl Med 44:1371-1378, 2003.
- 23. Burt RW, Witt RM, Cikrit D, et al: Carotid artery disease: Evaluation with acetazolamide-enhanced Tc-99m HMPAO SPECT. <u>Radiology</u> 182:461-466, 1992.
- 24. Soricelli A, Cuocolo A, Romano M, et al: Comparison between adenosine and acetazolamide for neuroactivation with single photon emission tomography. <u>Eur J</u> <u>Nucl Med</u> 34:830, 1993.
- 25. Hwang TL, Sainz A, Farrell JJ, et al: Brain SPECT with dipyridamole stress to evaluate cerebral blood flow reserve in carotid artery disease. J Nucl Med 37:1595-1599, 1996.
- 26. Bartenstein P, Minoshima S, Hirsch C, et al: Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT. J Nucl Med 38:1095-1101, 1997.
- 27. Claus JJ, van Harskamp F, Breteler MMB, et al: Assessment of cerebral perfusion with single-photon emission tomography in normal subjects and in patients with Alzheimer's disease: Effects of region of interest selection. <u>Eur J Nucl Med</u> 21:1044-1051, 1994.
- 28. Lewis PJ, Siegel A, Siegel AM, et al: Does performing image registration and subtraction in ictal brain SPECT help localize neocortical seizures? J Nucl Med 41:1619-1626, 2000.
- 29. Stokking R, van Isselt JW, van Rijk PP, et al: Integrated visualization of functional and anatomic brain data: A validation study. <u>J Nucl Med</u> 40:311-316, 1999.
- 30. Pfluger T, Vollmar C, Wismuller A, et al: Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. J Nucl Med 41:1823-1829, 2000.
- 31. 43-Tc-99m: <u>In</u> MIRD: Radionuclide Data and Decay Schemes, DA Weber, KF Eckerman, AT Dillman, JC Ryman, eds, Society of Nuclear Medicine, New York, 1989, pp 178-179.

- 32. Holman BL, Hellman RS, Goldsmith SJ, et al: Biodistribution, dosimetry, and clinical evaluation of technetium-99m ethyl cysteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018-1024, 1989.
- 33. Soundy RG, Tyrrell DA, Pickett RD, et al: The radiation dosimetry of Tc-99mexametazime. <u>Nucl Med Commun</u> 11:791-799, 1990.

Normal Findings

- > Lobaugh NJ, Caldwell CB, Black SE, et al: Three brain SPECT region-of-interest templates in elderly people: Normative values, hemispheric asymmetries, and a comparison of single- and multihead cameras. <u>J Nucl Med</u> 41:45-56, 2000.
- > Deutsch G, Mountz JM, Katholi CR, et al: Regional stability of cerebral blood flow measured by repeated technetium-99m-HMPAO SPECT: Implications for the study of state-dependent change. J Nucl Med 38:6-13, 1997.
- > Patterson JC, Early TS, Martin A, et al: SPECT image analysis using statistical parametric mapping: Comparison of technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med 38:1721-1725, 1997.
- Koyama M, Kawashima R, Ito H, et al: SPECT imaging of normal subjects with technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med 38:587-592, 1997.
- Van Laire KJ, Dierckx RA: Brain perfusion SPECT: Age- and sex-related effects correlated with voxel-based morphometric findings in healthy adults. <u>Radiology</u> 221:810-817, 2001.
- Schiepers C, Verbruggen a, Casaer P,et al: Normal brain perfusion pattern of technetium-99m-ethylcysteinate dimer in children. <u>J Nucl Med</u> 38:1115-1120, 1997.
- Kuji I, Sumiya H, Niida Y, et al: Age-related changes in the cerebral distribution of Tc-99m-ECD from infancy to adulthood. <u>J Nucl Med</u> 40:1818-1823, 1999.
- > Avery RA, Spencer SS, Spanaki MV, et al: Effect of injection time on postictal SPET perfusion changes in medically refractory epilepsy. <u>Eur J Nucl Med</u> 26:830-836, 1999.
- Kouilibaly PM, Nobili F, Migneco O, et al: Tc-99m-HMPAO and Tc-99m-ECD perform differently in typically hypoperfused areas in Alzheimer's disease. <u>Eur J</u> <u>Nucl Med</u> 30:1009-1013, 2003.